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ABSTRACT
It has become commonplace to assert that autonomous agents will

have to be built to follow human rules of behavior–social norms

and laws. But human laws and norms are complex and culturally

varied systems; in many cases agents will have to learn the rules.

This requires autonomous agents to have models of how human

rule systems work so that they can make reliable predictions about

rules. In this paper we contribute to the building of such models by

analyzing an overlooked distinction between important rules and

what we call silly rules —rules with no discernible direct impact on

welfare. We show that silly rules render a normative system both

more robust and more adaptable in response to shocks to perceived

stability. They make normativity more legible for humans, and can

increase legibility for AI systems as well. For AI systems to integrate

into human normative systems, we suggest, it may be important

for them to have models that include representations of silly rules.

CCS CONCEPTS
• Social and professional topics → Socio-technical systems;
• Computing methodologies → Cooperation and coordina-
tion; Multi-agent systems; • Applied computing→ Law.
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1 INTRODUCTION
As attention to the challenge of aligning artificial intelligence with

human welfare has grown, it has become commonplace to assert

that autonomous agents will have to be built to follow human norms

and laws [8, 9, 15]. But this is no easy task. Human groups are thick

with rules and norms about behavior, many of which are largely

invisible, taken for granted as simply “the way things are done" by
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participants [22]. They are constituted in complex ways through

second-order normative beliefs: beliefs about what others believe we
should or should not do in some situation [1, 2]. Human laws and

norms are frequently ambiguous and complicated, they vary widely

across jurisdictions, cultures, and groups, they change and adapt.

The cases in which they are reducible to formal rule statements

is the exception. Even deciding whether a vehicle has violated a

numerical speed limit is far from straightforward: was visibility

poor? were there children nearby? Adding to the complexity, rules

and norms are enforced both by formal institutions like courts

and regulators through costly and error-prone procedures and by

the informal behavior of agents through third-party criticism and

exclusion or internalization and self-criticism. This means that

what actually counts as a rule can easily diverge from announced or

formal rules and that rule-based environments are complex dynamic

systems. As a result, we cannot rely on formal rules simply being

imposed on agents a priori; instead, agents will in many cases have

to learn the rules and how they work in practice. Normativity–

the human practice of classifying some actions as sanctionable and

others as not and then punishing people who engage in sanctionable

conduct–will have to be legible [7] to AI systems.

In this paper, we introduce a distinction between types of rules

that can aid in building predictivemodels tomake human normative

systems legible to an AI system. We distinguish between important
rules and silly rules. An important rule is one the observance of

which by one agent generates direct payoffs for some other agent(s).

When an agent complies with rules prohibiting speeding, for exam-

ple, other agents enjoy a material payoff as a direct consequence,

such as a reduced probability of accident. A silly rule, in contrast,

in one the observance of which by one agent does not generate any

direct material payoff for any other agent. When an agent violates a

dress code, for example, such as by failing to wear a head covering

in public, no-one is materially affected as a direct consequence of

the violation. Observers might well be offended, and they might

punish the violator, but the violation itself is inconsequential.

We ground our claim that the distinction between silly and im-

portant rules will prove important to building models for aligned AI

using Monte Carlo simulations. We show that silly rules promote

robustness and adaptation in groups. Silly rules perform a legibility

function for humans–making it easier for them to read the state

of the equilibrium in their group when equilibrium is threatened.

Incorporating this insight about silly rules into AI design should

allow human normative systems to be more legible to AI.

Our paper is presented as follows. We first illustrate the concept

of silly rules an example drawn from a concrete environment. We

then develop a model of groups, based on [12], in which a group of

agents announces a set of rules and relies exclusively on voluntary

third-party punishment by group members to police violations. We
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first show formally that, if silly rules are costless, groups with more

silly rules achieve higher payoffs. We then consider the case in

which following and punishing silly rules is costly and present the

results of our simulations. Our results demonstrate that groups with

lots of (sufficiently cheap) silly rules are more robust: they are able

to maintain more of their population and are less likely to collapse

than groups with fewer silly rules in response to an unfounded

shock to beliefs about the proportion of punishers. Groups with lots

of silly rules are also more adaptable: they collapse more quickly

when there is a true drop in the proportion of punishers below the

threshold that makes group membership valuable.

Our contributions are threefold. First, we present a formal model

that can account for the presence of silly rules in a normative

system and show the conditions under which silly rules are likely

to exist. This is a contribution to normative theory in human groups.

Second, this work provides an example of the importance of building

predictive models of human normative systems qua systems–not

merely predicting the presence of particular norms, which is the

dominant approach taken in the growing literature on AI ethics

and alignment. Third, we demonstrate that standard AI methods

can be valuable tools in analyzing human normative systems.

2 WHAT ARE SILLY RULES? A THOUGHT
EXPERIMENT FROM ETHNOGRAPHY

One of the challenges of building models of human normativity is

that as researchers we are all participants in our taken-for-granted

normative environments and this can make it hard to study norms

scientifically [14]. To attempt to overcome this, we motivate our

work with an example drawn from an ethnography of a group

that engages in practices far removed from the worlds in which

AI researchers live. Moreover, we will use the shocking label "silly

rules" in order to illuminate an overlooked distinction in the context

of the existing literature on normativity. Most of the social science

of norms focuses on functional accounts of particular norms such

as norms of reciprocity, fair sharing of rewards, or non-interference

with property. These accounts argue that particular norms evolve

because they support human cooperation and thus improve fitness

[4, 25] or solve coordination games [16–18, 24] for example. Our

work highlights the systemic functionality of rules that, individually,

have no direct functionality. All human societies, we will show, are

likely develop silly rules, for good functional reasons.

Suppose that an AI system were tasked with learning how to

make arrows by observing the Awá people of Brazil. The Awá are

hunter-gatherers now living in relatively small numbers on reser-

vations established by the Brazilian government. One of the things

the AI will observe, like the ethnographers who have studied these

people, is that the men of the Awá spend four or more hours a day

making and repairing arrows [11]. They are produced in large quan-

tities and need frequent repair. They are between 1.4 and 1.7 meters

in length, customized to the height of their owner. Bamboo collected

to make the points is sometimes shared but the arrows themselves

are not; they are buried with their owner. The men use only dark,

not brightly colored feathers. All parts of the arrow —shaft, point,

and feathers —are smoked over a grill during preparation and the

arrows themselves are kept warm in smoke at all times unless they

are bundled and put in storage in the rafters of a hut. Will the AI

system reproduce all of these arrow-making behaviors? We can

imagine that AI designed with principles of inverse reinforcement

learning [19] might discern which behaviors actually contribute

to the functionality of the arrows–which is presumably what the

human designer intended [13]. According to the human ethnogra-

phers who observed the Awá, many of the arrow-making practices

are not functional. Even if smoking the wood used in the shaft of

the arrow during manufacture contributes to a harder, straighter

arrow, smoking the feathers seems unnecessary, as does ensuring

the arrows are kept warm at all times. Moreover, the men make

and carry many more arrows than they will use. In one season, a

total of 402 arrows were carried on 9 different foraging trips; 9 were

used. Most game on these trips was shot with a shotgun [11].

An AI system that ignored the non-functional arrow-making

behaviors, however, would be violating the norms of the Awá people.

The arrow-making practices described above are not just practices;

they are rules. They reflect normative expectations [1]. How do we

know? The lack of functionality is one clue: the Awá presumably

have also discovered that a cold arrow works and that they spend

a lot of time making arrows that go unused and are damaged by

being bundled and carried around. But the better evidence comes

from how they respond to the only man who makes his arrows

differently. This man is mocked: his arrows are exceedingly long

(2.3 m) and he uses brightly colored feathers. He is “the only man

who does not socialize with the rest of the village." His strange

arrows “are another sign of his loss of ‘Awá-ness’" [11]. The Awá’s

rules are normative, moral principles: bright colored feathers are

used only by women to prepare headbands and bracelets used by

men in religious rituals and are associated with the world of spirits

and ancestors; the making of fire and cooking are associated with

masculinity and divinity. An AI system that violated these rules in

the pursuit of arrow-making would not be aligned with the moral

code of the Awá.

We call the non-functional rules "silly rules". We emphasize that

silly rules are not “silly" to the groups that follow them. They can

have considerable meaning, as they do to the Awá. Our results will

show why silly rules can be very important to the overall welfare of

a group and hence the subject of intense concern by groupmembers.

3 MODEL
Our model is based on a framework developed in [12]. We charac-

terize a set of agents as a group defined by a fixed and common

knowledge set of rules. A rule is a binary classification of alternative

actions that can be taken in carrying out some behavior. Actions

are either “rule violations" or “not rule violations".

Members of this group engage in a finite sequence of interac-

tions, each of which is governed by a rule drawn randomly from

the ruleset. Each interaction is composed of a randomly selected

pair of agents and a third actor, whom we will call a scofflaw, who

will choose either to comply with the governing rule or not. (For

tractability reasons, we do not model the scofflaws as group mem-

bers.) One of the agents is randomly designated as the victim of

the rule violation; the other is a bystander. If a rule is an important
rule, the victim incurs a benefit if the rule is enforced and incurs a

cost if not. If a rule is a silly rule, the victim incurs no benefit from

the scofflaw’s compliance with the rule and no cost from violation.



Group members are of two types in the bystander role: punish-

ers, who always punish a rule violation, and non-punishers, who

never punish. We assume that groups members signal whether

they are punishers by paying a signaling cost in each interaction

before a potential violation occurs. ([5] show that signaling pun-

isher status supports an evolutionarily stable equilibrium in which

non-punishers cannot free-ride on punisher types.) The scofflaw

complies with the selected rule if the bystander is a punisher and

violates it otherwise. There is no punishment in equilibrium, but

the model can be seen as assuming that victims always punish but

punishment is only effective when bystanders punish as well.

Prior to each interaction, group members have an option to quit

the group and take a risk-free payoff. We formalize this setup as

follows.

Each interaction is a game д and we define the sequence for a

group as a tuple: ⟨G,Tθ ,Π,U ,γ , c⟩ where G is a distribution over

games andTθ is a distribution over punishment types t in the group,
where t = 1 if an agent is a punisher and t = 0 if not. The proportion

of punishers is given by θ ∈ [0, 1]. For the tractability of our agent

models, we treat Tθ as a static distribution, and assume agents do

likewise, even though it is subject to change as individuals leave

the group.

We will abuse notation somewhat and use T and G to refer to

the support of the corresponding distributions where the meaning

is obvious. Π is each agent’s prior distribution over the parameters

ofTθ , andU : G × Tθ → R is a mapping from types and games to

immediate payoffs for the agents. γ is each agent’s discount param-

eter for future rewards. c expresses a participation cost. This can be

understood as the expected cost of an agent in the bystander role

to signal that she is a punisher to the other agent in an interaction.

Every agent begins in period 1 with perfect knowledge of how

actions are classified, all payoffs, and the distribution of games. The

agents do not know the distribution of types in the group, but they

do hold a prior which we will specify shortly. The agents update

their beliefs about the distribution of types using Bayes’ rule. The

super game is defined as follows:

For each period j:

(1) Each agent chooses whether to participate or not. If an agent

opts out, she collects 0 payoff.

(2) All agents that opt in are matched with another agent at

random. A game дj ∼ G is drawn for each of the agent

pairings.

(3) Punishers incur a cost c to signal that they will punish viola-

tions. All players observe these signals.

(4) In each pairing one agent is randomly assigned the role of

victim,V , and the other the bystander, B. All players observe
the result of this random assignment.

(5) All players learn whether the game is a silly or important

game.

(6) If B is a punisher, the scofflaw complies with the rule. Other-

wise, the scofflaw violates the rule.

(7) Victims and bystanders collect payoffs given byUV (дj , tB , tV )
andUB (дj , tV , tB ).

Agents that play in the bystander role in any game incur no benefit;

they incur the cost c if they are a punisher and 0 if not. Agents that

play in the victim role receive a payoff of 0 in games governed by a

silly rule. In games governed by an important rule they receive a

positive reward R, if B is a punisher and a negative reward, −R, if
B is not.

We formalize the set of important games as follows:

G ′ = {д ∈ G |R(д) , 0}
UV (д, tO , tV ) = (2tO − 1)R(д) − (2tV − 1)c

UO (д, tO , tV ) = (2tO − 1)c
We will use EU = Eд,tO [UV (д, tO , tV )|д ∈ G ′] to denote the ex-

pected utility of an important game. We let d denote the density of

the process generating games: the probability of a silly game.

d = 1 − P(д ∈ G ′);д ∼ G .

Note that a super-game has high density (d close to 1) when silly

rules are a large fraction of the ruleset.

Critically, we ensure that the density of silly games does not alter

the (expected) rate at which important games are presented to the

agents. Rather than take the place of important interactions, in our

model silly interactions increase the total number of interactions
happening in the same time frame. To be concrete, we assume

the expected discounted reward obtained from important games is

independent of d . This condition can be attained through a suitable

modification of γ as a function of d :

Proposition 1. Setting

γd = 1 − (1 − d)(1 − γ )
ensures that the expected sum of discounted rewards from important
games is independent of d1.

Proof. See appendix. □

It can be easily shown that this constrained model describes an

optimal stopping problem [10]. Each agent in our model must choose

between participating, in which case they get an unknown reward

and learn about the enforcement equilibrium in the community,

or opting out, in which case they stop participating get a constant

reward of 0. A classic result from the literature on optimal stopping

tells us that, in the optimal policy, if the agent opts out once it will

opt out for the rest of time. This is because the agent’s information

state does not change when it chooses to opt out, so if it was optimal

to stop at time t − 1, it will also be optimal to stop at time t . Thus,
we refer to the decision not to participate at any point, then, as a

decision to retire.

These problems broadly fall under the class of partially observed
Markov decision processes (POMDP) [23]. In a POMDP the optimal

policy only depends on the agent’s belief state: the agent’s posterior
distribution over the hidden state of the system. In this case, this is

a distribution over the enforcement likelihood in the community.

We give our agent a beta prior over this parameter so that the

belief space for our agent is a two dimensional lattice equivalent

to Z2+. Initially, the belief state is (α0, β0). The probability that the

bystander is a punisher in the first game is

pα β =
α

α + β
.

Once the games begin, agents update their prior beliefs using Bayes’

rule, adding the counts of punishers and non-punishers observed

1I[ψ ] is the indicator function for the conditionψ .



Figure 1: The y-axis represents the proportion of the 1000 groups with at least 2 individuals left, where the x-axis represents time in terms
of the number of expected important interactions per agent. The size of the bubbles signifies the average size of the 1000 groups at the given
point in time. 40 linearly spaced values between 0.0 and 0.95 were used for silly rule density, and the graphs for each setting are colored
accordingly. For cost 0.02, we see that high density (blue) groups collapse rapidly, while the lowest density groups (orange) sustain their size
for the duration of the experiment. As the cost comes down, higher density groups start to survive.

to the prior values. In the following, we will use αi (βi ) to represent
the number of punishers (non-punishers) observed prior to round

i .

4 THEORETICAL ANALYSIS: THE VALUE OF
DENSE NORMATIVE STRUCTURE

Consider first the case in which the signaling cost, c , is zero. In this

case, punishers only face a risky choice when they are assigned

to the victim role in an important game. In all other periods, the

per-period expected payoff of playing the risky arm is a constant 0.

Intuitively, the benefit of higher density of unimportant games is

that the agent is in a more information rich environment. In general,

this benefit trades off with the cost of signalling. However, when

the signalling cost is 0, a higher density is strictly better. One way

to show this is to consider the value of perfect information (VPI):

the additional utility an agent can get in expectation when it has

full information compared with the expected utility with partial

information [21]. We can show that, in the limit as density goes

to 1, VPI goes to 0; high density of unimportant games essentially

removes the agents’ uncertainty over the proportion of punishers.

Proposition 2. If the participation cost, c , is 0, then, for any belief
state, (αi , βi ), and discount rate γ , the corresponding VPI goes to zero
as density goes to 1. That is

lim

d→1

VPI ((αi , βi );d,γ ) = 0 (1)

Proof. (Sketch; see Appendix for details.) We consider a policy

such that the agent participates in order to observe τ (d) interactions.
After τ (d) observations, it uses its best estimate of the probability

of enforcement to decide if it should leave. It doesn’t reconsider

retiring or rejoining afterwards. We show that this stopping time

function can be chosen so that the expected number of important

games goes to 0, so it doesn’t lose utility in expectation, while the

total number of interactions (including silly games) goes to∞, so
it makes the retirement decision with perfect information in the

limit. □

It is straightforward to show that VPI is strictly positive as long

as P(V (θ ) > 0) > ϵ > 0 and P(V (θ ) < 0) > ϵ > 0 for some

finite epsilon. Combined with our proposition, this means that

environments with more silly rules will be higher value to agents;

as the density of silly rules goes to 1, we can neglect the utility

lost due to partial information about the proportion of punishers.

Where participation costs can be neglected, an agent will prefer an

environment with lots of silly rules.

5 MONTE CARLO EXPERIMENTS
To test the benefit of silly rules in groups composed of our previ-

ously defined agents, we constructed a series of simulation-based

experiments in which we manipulated the density of silly rules, cost

of signaling, distribution of punishers, and prior beliefs about the

punisher distribution. Each simulation was carried out in a group



Figure 2: Using the same graphical representation as Figure 1, here
we see a comparison of the robustness between groups of groups at
3 different density values. As the number of interactions increases,
the survival rate and average population size of groups with higher
silly rule density surpasses those of lower density groups.

Figure 3: Using the same graphical representation as Figure 1 and
2, here we see a comparison of the adaptability between groups of
groups at 3 different density values. Given the unstable conditions
of the scenario, higher adaptability corresponds to faster a collapse
rate. Groupswith high density are seen to collapsemuch faster than
those with low density.

of 100 agents, each given the type of punisher or non-punisher.

The simulations were broken down into discrete periods, or group
interactions, in which each individual was matched with another

and engaged in an interaction, silly or important. We set the reward

for the victim in an important game to +1 in the case in which the

bystander is a punisher, and −1 if the bystander is not. Note that
given the symmetry in gains and losses in important games, con-

tinued participation in the group is valuable if the likelihood that

a bystander in an important game is a punisher is greater than .5

Given the density-adjusted discount factor for each simulation, the

expected reward of 10 interactions in a d = 0.9 environment would

be equivalent to that of 1 interaction in a d = 0.0 environment. This

allows us to normalize the periods into timesteps, where 1 timestep
is equal to

1

1−d group interactions.

We are interested in the size of groups over time, as agents make

decisions about whether to remain in the group or not given their

interaction experience, as a function of the density of silly rules.

We first consider the case in which there is low uncertainty about

the proportion of punishers in the group. We can think of this as

a base case in which a stable group has engaged in interactions

over a long period of time and all agents have many observations

of the proportion of punishers in the group. We set θ , the punisher
proportion, to be 0.6 and the alpha-beta prior of the agents to 30 : 20,

which implies high confidence in the agents’ estimate of θ . Note that
with this ground truth, group membership is valuable, generating

an expected payoff higher than the alternative of 0. We then run

the simulation for 1000 groups on the full factorial of 20 logistically

scaled signaling costs, c , and 20 linearly scaled densities, d . Doing
so confirms our first hypothesis (see Figure 1):

Hypothesis 1: When uncertainty about the proportion of punishers
in a group is low, the likelihood that a group loses members and the
likelihood the group collapses increases with the density of silly rules.

In this case, as the frequency of the cost of signaling that one

is a punisher in silly interactions increases it begins to outweigh

the possible rewards from important interactions. We see that as

cost goes up, groups with higher density of silly interactions shrink

and collapse more frequently than those with low density. This

confirms the intuition that silly rules are costly if they serve no

information function.

5.1 Group Robustness
Having established a baseline, we investigate the benefits of silly

rules for a group by considering different scenarios that will stress

test the robustness and adaptability of a group. The first case we

consider is one in which the individuals’ beliefs in a stable group are

shocked, lowering their confidence in the proportion of punishers.

Concretely, this involves setting the beta priors to 1.2 : 0.8 instead

of 30 : 20. Our hypothesis for the belief-shock scenario is as follows:

Hypothesis 2: For sufficiently low signaling cost, a higher density
of silly rules increases a group’s resilience to shocks in individuals’
beliefs about the distribution of punishers.

As shown in Figure 2, in settings with low signaling cost, high

density allows for quick stabilization and strong individual re-

tention. Around 75% of groups with 0.9 density persist after 250

timesteps, with an average population of 50. Compare this to the

lower density groups, where the groups that survive lose most

members before stabilizing.

5.2 Group Adaptability
To test adaptability, we imagine an alternative scenario in which

the shock to individuals’ beliefs is accompanied by a change in

the ground truth about the proportion of punishers. Concretely,

we change the beta prior to 1.2 : 0.8 once again, and set θ to be

0.4. With fewer punishers than non-punishers, participation in the

group generates a negative expected payoff, and agents would do

better to leave the group. Put differently, the group’s ruleset is no

longer generating value for group members. In a negative-value

group such as this, we define the adaptability of the group to be the

rapidity of collapse. Our hypothesis for this scenario is as follows:



Hypothesis 3: For sufficiently low signaling cost, a higher density
of silly rules allows for faster adaptation to negativer shocks in the
distribution of punishers in a group.

Looking to Figure 3, we find support for this hypothesis in the

experiments. After only a few timesteps, we see that the high density
groups are mostly collapsed, whereas the lower density groups take

quite a bit longer to peter out.

6 DISCUSSION
Our results show that silly rules enrich the information environ-

ment and help groups adapt to uncertainty about the stability of

social order. They help group members track their beliefs about

the likelihood that violations of important rules will be punished,

and thus the likelihood that important rules will be violated. These

beliefs are critical to the incentive to invest resources in interaction.

We focus on the punisher type of bystanders because third-party

punishment is the distinctive feature of human groups [6, 20, 25];

it extends the range of actions that can be deterred from those

deterred by the reactions of the victim alone to those that can be

deterred by group punishment [3].

What are the lessons for AI alignment research? The goal of

AI alignment is the goal of building AI systems that act in ways

consistent with human values. For groups of humans, this means

(at least) values reflected in rules of behavior. Discerning values

from rules is complex: some rules reflect important values, such as

honoring a promise or avoiding harm. Others do not reflect values

that are important per se. For an AI system to make good inferences

and predictions from observing normative behavior, then, it will

need to distinguish between important rules and silly rules.

Failing to make this distinction could lead to at least two key

inferential errors. One error would be to treat important and silly

rules as equally likely to vary over time and place. But important

rules, because they promote functionality in human interactions,

are likely to vary only when there is some causal reason. Silly rules,

on the other hand, can vary for any reason, or none. Modelling the

distinction between silly and important rules is essential to accu-

rately learning rule systems. An AI system that lacks this distinction

will over-estimate the likelihood of encountering certain types of

normative behavior–with respect to dress codes, for example–while

under-estimating the likelihood of others, such as speeding rules.

A second error that could result from a failure to distinguish

between important and silly rules is that an AI system is likely to

treat all rules that it sees enforced as equally important to human

values. This would produce a good solution in ordinary circum-

stances. But this will produce a poor solution in circumstances in

which it would be very costly to comply with all the rules. If an AI

system treats all of rules as equally important to humans, it will

presumably economize equally across the rules. The better solution

prioritizes important rules and compromise on silly rules.

The distinction between silly and important rules also raises a

question for work on human-robot interaction: how important is

it for an AI system to help enforce silly rules? Our model brings

out a legibility function in silly rules–they make it easier for agents

in a group that depends on third-party enforcement to discern the

stability of the rules in light of uncertainty generated by changes in

population or the environment. If artificial agents are interacting

in these environments and they don’t participate in enforcing silly

rules, what impact does that have on the beliefs of human agents?

Does the introduction of large numbers of artificial agents who

ignore silly rules into a human group (such as self-driving cars into

the group of humans driving on highways) have the same impact

on the robustness and adaptability of the group as a decrease in the

density of silly rules, by reducing the amount of information gained

from the opportunity to observe bystander behavior in interactions?

Further still, when a robot learns and enforces silly rules, do these

seemingly arbitrary norms become reified, fundamentally changing

their meaning and reducing their signaling potential? We leave

these questions, and others, for future research.
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APPENDIX: PROOFS
Proposition 1. Setting

γd = 1 − (1 − d)(1 − γ )

ensures that the expected sum of discounted rewards from important
games is independent of d :

∀d, ∈ [0, 1) Eдj ,tO


∞∑
j=0

γ jUV (дj , tO , tV )

������дj ∈ G ′
 =

Eдj ,tO


∞∑
j=0
I[дj ∈ G ′]γ jdU (дj , , tO , tV )

������d
 .

Proof. We first show that it is sufficient to ensure that the ex-

pected value of γ
j
d is the same given that j is a round with an

important game:

Eдj ,tO


∞∑
j=0
I[дj ∈ G ′]γ jdU (дj , tO , tV )

������d


=

∞∑
j=0
Eдj ,tO

[
I[дj ∈ G ′]γ jdU (дj , tO , tV )

���d]
=

∞∑
j=0

γ
j
dEдj ,tO [U (дj , tO , tV )|d,дj ∈ G ′]Eдj

[
I[дj ∈ G ′]|d

]
= (1 − d)EU

∞∑
j=0

γ
j
d

where the first line holds by the linearity of expectation, the fact that

дj is an independent iid draw from a stationary distribution, and

the constraint on the agent’s beliefs that tO is a also an independent

iid draw from a stationary distribution. Substituting the form of

the infinite geometric series, we see that

EU

1 − γ
=

(1 − d)EU
1 − γd

(2)

is sufficient to achieve our goal. Substituting the form for γd in

the theorem statement and reducing shows that this condition is

satisfied. □

Proposition 2. If the participation cost, c , is 0, then, for any belief
state, (αi , βi ), and discount rate γ , the corresponding VPI goes to zero
as density goes to 1. That is

lim

d→1

VPI ((αi , βi );d,γ ) = 0 (3)

Proof. Let V (θ ) be the expected value of participating forever,

given θ . The optimal full information policy will retire whenever

V (θ ) < 0 and has valueV+(θ ) = max{V (θ ), 0}. VPI is the difference
between the expected value of V+ and the value of the optimal

partial information policy V ((αi , βi );d,γ ):

VPI ((αi , βi );d,γ ) =
E [V+(θ )| (αi , βi )] −V ((αi , βi );d,γ ) (4)

We proceed by lower bounding V . V is the value of the optimal

policy so it is weakly lower bounded by any arbitrary policy. We

consider a policy that participates for

τ (d) = 1

√
1 − d

(5)

rounds and then retires if E[V (θ )] < 0. This choice of τ ensures

that

lim

d→1

τ (d) = ∞; (6)

lim

d→1

∑
t<τ (d )

P(дt ∈ G) = lim

d→1

1 − d
√
1 − d

= 0.

(7)

(6) ensures that, as density goes to 1, then agent’s estimate of

participation value when it decides, E[V (θ )] converges to V (θ ) by
consistency. (7) ensures that the expected number of important

games (and thus opportunities to lose utility against a full informa-

tion agent) goes to 0. This is sufficient to show that

lim

d→1

V ((αi , βi );d,γ ) = E[V+(θ )|(αi , βi )] (8)

which shows the result. □
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